

**Prince Sultan University** 

MATH 221 Final Exam Semester 2, Term 171 Saturday, January 6th, 2018

**Instructor: Dr. Muhammad Dure Ahmad** 

Time Allowed: **<u>3 hours</u>** 

Student Name: \_\_\_\_\_

Student ID #: \_\_\_\_\_

## **Important Instructions:**

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 10 problems, some with several parts. Make sure your paper has all these problems.

| Question # | Max points | Student's Points |
|------------|------------|------------------|
| Q1         | 8          |                  |
| Q2         | 8          |                  |
| Q3         | 8          |                  |
| Q4         | 8          |                  |
| Q5         | 10         |                  |
| Q6         | 6          |                  |
| Q7         | 8          |                  |
| Q8         | 8          |                  |
| Q9         | 8          |                  |
| Q10        | 8          |                  |
| Total      | 80         |                  |

**Q-1:** (8 points) For the function  $f(x) = \sqrt{x}$ , x > 0, estimate  $f(x_T) - f(x_A)$  and using the Mean Value Theorem, show that relative error  $\operatorname{Re} l(f(x_A)) = \frac{1}{2} \operatorname{Re} l(x_A)$ . Here  $x_T$  is exact value and  $x_A$  is approximate value.

**Q-2: (8 points)** Perform the <u>first three</u> iterations to approximate a root of  $e^x - 3x^2 = 0$  using <u>Secant Method</u>. Take the initial approximation  $x_0 = 0.5$  and  $x_1 = 0.7$ .

**Q-3:** (8 points) Let  $\alpha$  be the root of the equation  $x = \sqrt{N}$  for any real number *N*. Find the *fixed point iteration form of Newton's method* and show that  $e_{n+1} = \frac{e_n^2}{2x_n}$ , where  $e_n = x_n - \alpha$  and  $e_{n+1} = x_{n+1} - \alpha$  are absolute errors in *nth* and (n+1)th term respectively.

**Q-2: (8 points)** Compute the *first four steps* to approximate the spectral radius of the following matrix using Power Method. Take the initial approximation  $X_0 = (1,1,1)^T$ 

| $\left[-4\right]$    | 14 | 0 |
|----------------------|----|---|
| -5                   | 13 | 0 |
| $\lfloor -1 \rfloor$ | 0  | 2 |

**Q-5:** (10 points) Show that Simpson's formula for integration is exact for  $f(x) = x^2$  and  $f(x) = x^3$ . Then using  $f(x) = x^4$  compute the error bound formula for Simpson's Rule.

**Q-6:** (6 points) Determine  $||A||_{\infty}$  for the matrix  $A = \begin{bmatrix} 2 & 1 & -3 \\ 4 & 0 & 2 \\ 5 & -1 & -4 \end{bmatrix}$ 

**Q-7:** (8 points) Construct divided difference table for the function f(x)=ln(x+2) in the interval  $0 \le x \le 3$  for step size h=1. Use this table to approximate ln(3.5) using 3<sup>rd</sup> degree interpolating polynomial.

**Q-8: (8 points)** Consider the initial value problem  $y' = e^{x^2} + \ln(x + y)$ , y(0) = 1. Compute y(0.2) and y(0.4) using <u>second order Runge Kutta Method</u>.

**Q-9**: (8 points) Show that the following system is diagonally dominant and then perform first two iterations of Gauss-Seidle Method to approximate the solution.

$$45x_1 + 2x_2 + 3x_3 = 58$$
  
- 3x<sub>1</sub> + 22x<sub>2</sub> + 2x<sub>3</sub> = 47  
5x<sub>1</sub> + x<sub>2</sub> + 20x<sub>3</sub> = 67

**Q-10: (Spoints)** The function f(x) satisfied the equation  $f''(x) = 2x^3 f(x)$  and the condition f(0) = 3, f(0.2) = -5. Use the central difference formula for f''(x) and step size h=0.1 to estimate the value of f(0.1).

## Extra sheet

## Extra sheet