

Prince Sultan University MATH 221 Major Test I Semester I, Term 171 Thursday, November 1st, 2017 Time Allowed: <u>90 minutes</u>

Student Name: _____

Student ID #: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 6 problems, some with several parts. Make sure your paper has all these problems.

Question #	Max points	Student's Points
Q1	7	
Q2	6	
Q3	7	
Q4	8	
Q5	4	
Q6	8	
Total	40	

Q-1(7 points) Let $x = \frac{8}{13}$ and $y = \frac{2}{3}$. Use five digit rounding for calculating x+y and find absolute and relative error.

Q-2(6 Points) Let α_1 and α_2 be two fixed point of the quadratic function $f(x) = \frac{1}{2}x^2 - \frac{3}{2}x + 2$

- a) Find the values of both fixed points
- b) For which point the fixed point method will converge

Q-3 (7 Points) What is the order of convergence of the iteration

$$x_{n+1} = \frac{x_n (x_n^2 + 3b)}{3x_n^2 + b}$$

as it converges to a fixed point $\alpha = \sqrt{b}$?

Q-4 (8 Points) a) Show that if *g* is continuously differentiable on the given interval [a,b] and $g(x) \in [a,b]$ for all $x \in [a,b]$, then g has at least one fixed point in [a,b].

b) Show that if the condition of part (a) are satisfied along with an additional condition $|g'(x)| \le k < 1$ for all $x \in [a,b]$, then the fixed point will be unique.

Q-5(4 points) Let $f(x) = -x^3 - \cos x$, and $p_0 = -1$. Use Newton's method to find p_1 and p_2

Q-6 (8 Points) Show that the sequence $x_n = \cos\left(\frac{1}{n}\right)$ converges linearly to x=1. Then determine the first five terms of the sequence given by Atkin's Δ^2 method.