

Prince Sultan University MATH 221 Major Test II Semester I, Term 171 Wednesday, December 13, 2017 Time Allowed: <u>90 minutes</u>

Student Name: _____

Student ID #: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 6 problems, some with several parts. Make sure your paper has all these problems.

<u>Important Remark:</u> You need to show complete steps for full credits.

Question #	Max points	Student's Points
Q1	7	
Q2	7	
Q3	7	
Q4	6	
Q5	5	
Q6	8	
Total	40	

Q-1(7 points) Find the interpolating polynomial in Lagrange form for the given data; hence find *f*(-1).

x	-2	0	1	3
f(x)	7	3	1	27

Q-2: (7 Points) Find a linear spline function that interpolates the following data.

x	1	2	3	4
f(x)	1.0	0.67	0.5	0.4

Also find *f*(2.9).

Q-3 (7 Points) Consider the points $x_0 = 0$, $x_1 = 0.5$, and $x_2 = 0.9$ and for a function f(x), the divided differences are $f[x_2] = 5$, $f[x_1, x_2] = 8$ and $f[x_0, x_1, x_2] = 11$. Use this information and construct the complete divided difference table for the given data points. Using this table to get second degree Newton's Polynomial $P_2(x)$ to approximate f(x) at x=0.7.

Q-4(6 Points) Evaluate the integral $\int_{-1}^{1} x^2 e^{-x} dx$ using composite Simpson's Rule with the spacing h=0.25.

Q-5 (5 points): Let $f(x) = x^2 Cos(x)$. Compute the approximation of f''(1) by taking step size h=0.1 using second order central difference formula.

Q-6(8 points) : Consider the initial value problem

$$\frac{dy}{dt} = \frac{2t^3 + 3y^2}{6}, \quad y(0) = 0, \ 0 \le t \le 1, \ -2 \le y \le 2$$

Determine how small the step size should be so that the global error in Euler's method does not exceed 10^{-3} .