Introduction to Syntax Directed Translation and Top-Down Parsers
Attributes and Semantic Rules

Let’s associate attributes with grammar symbols, and semantic rules with productions. This gives us a syntax directed definition. (Note simpler grammar)

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Semantic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E₁ + T</td>
<td>E.v := E₁.v + T.v</td>
</tr>
<tr>
<td></td>
<td>E.v := T.v</td>
</tr>
<tr>
<td>T → T₁ * F</td>
<td>T.v := T₁.v * F.v</td>
</tr>
<tr>
<td></td>
<td>T.v := F.v</td>
</tr>
<tr>
<td>F → (E)</td>
<td>F.v := E.v</td>
</tr>
</tbody>
</table>
| F → num | F.v := num.v | ("value" of token)
Annotated ("Decorated") Parse Tree After Executing Semantic Rules

\[E \rightarrow E_1 + T \]
\[\mid T \]
\[T \rightarrow T_1 * F \]
\[\mid F \]
\[F \rightarrow (E) \]
\[\mid \text{num} \]

E.v := E_1.v + T.v
E.v := T.v
T.v := T_1.v * F.v
T.v := F.v
F.v := E.v
F.v := num.v

Input string: 3 * 4 + 5 * 2
Infix and Postfix Expressions

- Infix: 3×4
- Postfix: $3 \ 4 \ \times$

- Infix: $3 \times 4 + 5 \times 2$
- Postfix: $3 \ 4 \ \times \ 5 \ 2 \ \times \ +$

- Let’s build a translator from infix to postfix
Translation as an Attribute

An attribute could be anything, including a translation. Let attribute “.t” be a character string, and “||” be the string concatenation operator for strings.

Grammar

- $E \rightarrow E_1 + T$
- $E \rightarrow T$
- $T \rightarrow T_1 \ast F$
- $T \rightarrow F$
- $F \rightarrow (E)$
- $F \rightarrow \text{num}$

Semantic Rules

- $E.t := E_1.t || T.t || '+'$
- $E.t := T.t$
- $T.t := T_1.t || F.t || '*'$
- $T.t := F.t$
- $F.t := E.t$
- $F.t := \text{num.t}$
Annotated Parse Tree After Executing Semantic Rules

\[E \rightarrow E_1 + T \quad \text{E.t} := E_1.t || T.t || '+' \]
\[\mid T \quad \text{E.t} := T.t \]
\[T \rightarrow T_1 * F \quad \text{T.t} := T_1.t || F.t || '*' \]
\[\mid F \quad \text{T.t} := F.t \]
\[F \rightarrow (E) \quad \text{F.t} := E.t \]
\[\mid \text{num} \quad \text{F.t} := \text{num.t} \]

Input string: \(3 * 4 + 5 * 2 \)
Translation Schemes

• What we have seen so far is called a “Syntax-directed definition”
 - Which is simply a specification of the translation to be performed
 - Without necessarily addressing how this might be accomplished in any real implementation
 • Order of evaluation of rules is not specified, for example
• If we can develop a plan for how to implement the translation, in the form of particular actions to be performed, and the order in which they should be performed, we will have something called a “Syntax-directed translation Scheme”
Translation Schemes

- If we embed program fragments called \textit{semantic actions} \textit{within} the RHS’s of productions, we will have a \textit{translation scheme}.
- This explicitly shows the order of evaluation of the actions.
 - (assuming we can imply the order in which the parse tree will be covered)
- Here is a scheme which \textit{concatenates} simply by writing \textit{(appending)} to a file.
- \textbf{Implied Traversal order:}
- \textit{We must “visit” child nodes before we can visit} an interior node.
- \textit{..and execute the action when we “visit”}

\begin{verbatim}
E → E + T { print ‘+’ }
 | T
T → T * F { print ‘*’ }
 | F
F → (E)
 | num { print num }
\end{verbatim}
Translation Scheme in Action

E → E + T { print ‘+’ }
| T
T → T * F { print ‘*’ }
| F
F → (E)
| num {print num. t }

Input string: 3 * 4 + 5 * 2

Output string: 3 4 * 5 2 * + 9
Depth First Traversal

- The translation scheme depends on actions happening is a certain order.
- It must be bottom-up, left-to-right
- A guaranteed way to do this is to do a depth-first traversal of the parse tree

```plaintext
procedure visit (node n) {
    for each child m of n, from left to right {
        visit (m);
    }
    evaluate semantic rules at node n;
}
```
Depth First Traversal

procedure visit (node n) {
 for each child m of n, left to right {
 visit (m);
 }
}
Our Translation Scheme Re-Visited

E → E + T { print '+' }
 | T
T → T * F { print '*' }
 | F
F → (E)
 | num {print num.t }

If we could develop a parsing scheme which "visits" the parse tree nodes in this order, we can "execute" our translation scheme while we parse!

Output string: 3 4 * 5 2 * +
• “Formal” Definitions of a Parser
 – A parser is some system capable of constructing
 the derivation of any sentence in some language
 \(L(G) \) based on a grammar \(G \).
 • which talks about a derivation
 – A parser for a grammar \(G \) is a program that reads a
 string \(w \) and produces either a parse tree for \(w \) (if
 \(w \) is a sentence of \(G \)) or an error message.
 • which is about building a parse tree
Two Major Classes of Parser

Top-Down Parser: a parser that builds a parse tree starting at the root (the start symbol), building downwards to the leaves (tokens).

Bottom-Up Parser: a parser that starts at the leaf nodes (bottom), and builds upwards towards the root.

- Has to match up strings of symbols which match the RHS of productions, and reduce them, replacing them with the non-terminal on the LHS.
- Sometimes called a shift-reduce parser.
Top-Down Parser Construction

• Top-down parsers, especially hand-written ones, are easier to understand and visualize the first time around.

• So we’re going to “invent” top-down parsing looking at progressively more interesting grammars.
Parsing a Very Simple Grammar

Grammar G1: \[S \rightarrow \text{if (true) goto label} \]

We need a lexical analyser `getoken()` which identifies one token at a time and returns a token code in the form of a manifest (or enumerated) constant (to use vanilla C terminology). Something like:

```c
#define IF 256
#define TRUE 257
...etc....
```

For single-character tokens like the left parenthesis, we can use the ascii code for the character as the code.
G1 Parser (continued)

- We’re describing algorithms, and we’ll stick to procedural code, mostly in “C”
- Here is a useful procedure which will simplify the programming of a parser. Note the use of a “look-ahead” token in the variable tok.

```c
int tok; /* Yes, a global variable! */
match(int t) {
    if (tok == t) tok = getoken();
    else error("Syntax error");
}
```
The Actual (G1) Parser

The Grammar: \[S \rightarrow \text{if (true) goto label} \]

\[
\begin{align*}
\text{main()} & \{ \\
& \quad \text{tok = getoken(); /* read first lookahead */} \\
& \quad S(); \\
& \quad \text{printf("Parse complete!");} \\
\} \\
\text{S()} & \{ \\
& \quad \text{match(IF); match(' '); match(TRUE);} \\
& \quad \text{match(' '); match(GOTO); match(LABEL);} \\
\}
\]
Dealing with Non-Terminal Symbols

Grammar G2:
\[
\begin{align*}
S & \rightarrow \text{if (E) goto label} \\
E & \rightarrow \text{id > id}
\end{align*}
\]

Approach: simply write a new parsing procedure for each non-terminal symbol in the grammar, and instead of “matching”, if we encounter a non-terminal in some RHS we simply call the parsing procedure for that non-terminal
G2 Parser

G2:

\[
\begin{align*}
S & \rightarrow \text{if (E) goto label} \\
E & \rightarrow \text{id > id}
\end{align*}
\]

Parser:

```c
main() { /* same as before */ } 
S() { 
    match(IF); match('(');
    E();
    match(')'); match(GOTO); match(LABEL);
} 
E() { 
    match(ID); match('>'); match(ID);
} 
```
Multiple Productions

A more realistic grammar would generate more than one sentence (!), and require that the parser actually make choices.

For example:

\[G3: \quad S \rightarrow \text{if } (E) S \\
\quad \quad \quad | \quad \text{goto label} \\
\quad \quad \quad | \quad \text{id = id} \\
\quad E \rightarrow \text{id > id} \]
Multiple Productions

• If there is more than one production for some non-terminal, the parser must decide which one to “apply”

• We will use the look-ahead symbol to make this decision
 - comparing the look-ahead with the first symbol on the LHS of each production
 - but only works if the first symbol is a terminal!
G3 Parser

G3:

S → if (E) S
 | goto label
 | id = id
E → id > id

• main() and e() have not changed from the previous version
• Note the recursion in S which supports nested if’s
• This is a recursive descent parser

S() {
 if (tok == IF) {
 match(IF); match('(');
 E();
 match(')');
 S();
 }
 else if (tok == GOTO) {
 match(GOTO); match(LABEL);
 }
 else if (tok == ID) {
 match(ID); match('='); match(ID);
 }
 else error("Syntax error in rule S");
}
But Not All Productions Start with Tokens!

How about grammar G4?:

\[
S \rightarrow \ \text{IF_ST} \\
\ | \ \text{LOOP} \\
\ | \ \text{ASSIGN} \\
\text{IF_ST} \rightarrow \ \text{if} \ (E) \ S \\
\text{LOOP} \rightarrow \ \text{while} \ (E) \ \text{do} \ S \\
\ | \ \text{do} \ S \ \text{while} \ (E) \\
\text{ASSIGN} \rightarrow \ \text{id} = \ \text{id} \\
E \rightarrow \ \text{id} > \ \text{id}
\]

How will we decide which productions of S to choose in our parser?
When Productions Start With a Non-terminal

S	→	IF_ST			
				• We need to know something about what strings a RHS can derive	
					• Let $A \rightarrow \alpha$ be a production
				• Define $\text{FIRST} (\alpha)$ to be the set of terminals which could be the first token in strings derived from α	
IF_ST	→	if (E) S			
LOOP	→	while (E) do S			
ASSIGN	→	id = id			
E	→	id > id			

• We need to know something about what strings a RHS can derive
• Let $A \rightarrow \alpha$ be a production
• Define $\text{FIRST} (\alpha)$ to be the set of terminals which could be the first token in strings derived from α
Example of FIRST()

A fragment of G4:

\[
\begin{align*}
S & \rightarrow \text{LOOP} \\
\text{LOOP} & \rightarrow \text{while (E) do S} \\
 & \mid \text{do S while (E)}
\end{align*}
\]

What is FIRST (LOOP)?

FIRST (LOOP) = \{ while, do \}

- (the set consisting of the token \text{while} and the token \text{do})

So select production \(A \rightarrow \alpha \) if the look ahead token is in \text{First} (\(\alpha \))
Choosing the productions of S

We need the FIRST sets for the productions of S

\[S \rightarrow IF_ST \]
\[\mid LOOP \]
\[\mid ASSIGN \]
\[IF_ST \rightarrow \text{if } (E) S \]
\[LOOP \rightarrow \text{while } (E) \text{ do } S \]
\[\mid \text{do } S \text{ while } (E) \]
\[ASSIGN \rightarrow \text{id } = \text{id} \]
\[E \rightarrow \text{id } > \text{id} \]

FIRST(IF_ST)={ if }
FIRST(LOOP)={ while, do }
FIRST(ASSIGN)={ id }
Parsing Procedure for S

\[S() \{ \]
 \[
 \text{if (tok == IF) IF_ST();} \\
 \text{else if ((tok == WHILE) || (tok == DO)) LOOP();} \\
 \text{else if (tok == ID) ASSIGN();} \\
 \text{else error("Syntax error in rule S");} \\
 \]
\}
Footnotes and Gotcha's

Remember:

\[S \rightarrow \text{LOOP} \]
\[\text{LOOP} \rightarrow \text{while (E) do S} \]
\[\quad \mid \text{do S while (E)} \]

While computing FIRST(LOOP) we may find a production for LOOP that starts with a non-terminal: (must go deeper into grammar..)

..and

If we have two productions \(A \rightarrow \alpha \) and \(A \rightarrow \beta \) then FIRST(\(\alpha \)) and FIRST(\(\beta \)) must be disjoint
Parse Tree Traversal in Recursive Descent Parsers

- Our parser did not produce a parse tree
- ..but it could have, because it constructed a left-most derivation, which is equivalent
- In what order does the parser traverse the conceptual tree?

- Define “visit” to mean:
- We have just called match() to consume a leaf node, or:
- We have just called the parsing procedure for a non-terminal (an interior node) and that procedure has just finished matching one of its productions
Parse Tree Traversal

\[S \rightarrow IF_ST \]
| \rightarrow LOOP
| \rightarrow ASSIGN
\[IF_ST \rightarrow if \ (E) \ S \]
\[LOOP \rightarrow while \ (E) \ do \ S \]
| \rightarrow do \ S \ while \ (E) \]
\[ASSIGN \rightarrow id = id \]
\[E \rightarrow id > id \]

Let's trace:
while \((x > y)\) do \(y = x\)
Recursive Descent is Depth-First!

- This was depth-first, as we defined earlier
- Therefore we could perform a translation scheme using such a parser
- We just insert the actions (code fragments) in the parsing routines, at the points which correspond to “visit”
- Let’s try it!
First Attempt at a Translator

We need to compute FIRST(E) and FIRST(T)

FIRST(E) = { "]", num }
FIRST(T) = { "(", num }

Whoops!

(Not only do we have no way to decide between the first two E productions, we can’t even distinguish them from the “T one.)

But it gets worse:
if E() chooses production E+T, the first thing that happens is it calls E() recursively!
Left-Recursion and Top-Down Parsers

• If the first thing a parsing procedure does is call itself recursively without first consuming any input
 - It will make the same decision the next time because the "state" has not changed
 - and call itself again... and again... and again.........

• Bad News:

• We cannot use a recursive descent parser (or any other top-down parser) for a grammar that contains left-recursive productions

• So we need a method to transform grammars containing left-recursion into grammars without left-recursion
Elimination of Left Recursion

• Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]

• What language does this generate?

• \(S \) generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s

• Can rewrite using right-recursion
 \[S \rightarrow \beta \ S' \]
 \[S' \rightarrow \alpha \ S' \mid \epsilon \]
Elimination of Left Recursion

• In general

 \[S \rightarrow S \alpha_1 | ... | S \alpha_n | \beta_1 | ... | \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of any of the \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

 \[S \rightarrow \beta_1 S' | ... | \beta_m S' \]

 \[S' \rightarrow \alpha_1 S' | ... | \alpha_n S' | \epsilon \]
General Left Recursion

• The grammar

\[S \rightarrow A \alpha \mid \delta \]
\[A \rightarrow S \beta \]

is also left-recursive because

\[S \Rightarrow S \beta \alpha \]

• This left-recursion can also be eliminated

• See book, pp. 157-162 for general algorithm
Second Attempt at Translator

We will treat the actions just like other grammar symbols:

i.e. "{ foo=bar }" counts as one symbol
Writing a Translator (finally..)

\[
E \rightarrow T \ R
\]

\[
R \rightarrow + \ T \ { \{ \ \text{print '+'} \ \} \ } \ R
| - \ T \ { \{ \ \text{print '-'} \ \} \ } \ R
| \epsilon
\]

\[
T \rightarrow F \ Q
\]

\[
Q \rightarrow * \ F \ { \{ \ \text{print '*'} \ \} \ } \ Q
| / \ F \ { \{ \ \text{print '/'} \ \} \ } \ Q
| \epsilon
\]

\[
F \rightarrow (\ E)
| \ \text{num} \ { \{ \ \text{print num} \ \} \ }
\]

\[
E() \{ \ T() ; \ R() ; \}
\]

\[
R() \{
\quad \text{if (tok=='+')} \{ \\
\quad \quad \text{match('+'); T();} \\
\quad \quad \text{printf(" + "); R();}
\}
\quad \text{else if (tok=='-')} \{ \\
\quad \quad \text{match('-'); T();} \\
\quad \quad \text{printf(" - "); R();}
\}
\quad \text{else ; /* accept empty string */}
\}
\]
Notes

• Note how the semantic action has been carried into the middle of production RHS’s and code inserted at the appropriate point in the parsing routine

• Productions for T and Q are almost identical in form:
The Rest of the Parser/Translator

T() { F(); Q(); }
Q() {
 if (tok=='*') {
 match('*'); F();
 printf(" * "); Q();
 }
 else if (tok=='/') {
 match('/'); F();
 printf(" / "); Q();
 }
 else; /* accept empty string */
}

Question: Why did I call printf before calling match(NUM)?

F() {
 if (tok == NUM) {
 printf(" %d ", tokenval);
 match(NUM);
 }
 else if (tok == '(') {
 match('('); E();
 match(')');
 }
 else error("syntax error");
}
We Need a Lexical Analyser

- We've already seen how straightforward it is to write a "lexer" for a simple grammar such as this.

- Tokens are:
 num () + - * /

Here's the header stuff:

```c
#include <stdio.h>
#include <ctype.h>
#include "globals.h"

#define NONE -1    /* used for tokenval */
#define NUM  256
#define ID   257 /* not needed yet */
#define DONE 258

int tok= NONE;
int lineno = 1;
int tokenval = NONE;
```
A Suitable Handwritten Lexer

```c
int getoken() {
    int t;
    while(1) {
        t = getchar();
        if (t==' ' || t=='	') ;
        /*strip white space*/
        else if (t == '
') ++lineno;
        else if (isdigit(t)) { /* num */
            tokenval = t - '0';
            t = getchar();
            while (isdigit(t)) {
                tokenval = tokenval*10 + t-'0';
                t = getchar();
            }
            ungetc(t, stdin);
            return NUM;
        }
        else if (t == EOF) return DONE;
        else {
            tokenval = NONE;
            return t; /* + - ( ) etc. */
        }
    }
}
```

We should really enumerate all the legal one-char tokens and report illegal characters, but if we don’t the parser will end up reporting the error anyway...

Note the use of one-character look-ahead in lexer using a trick from C library
A Second Translator

For a second example, let’s generate “code” for a stack machine with the following instructions:

- push x: push contents of word at address x
- pushcon num: push integer constant num
- add: pop 2 words, add them, push sum
- subtract: pop 2 words, subtract, push result
- multiply: pop 2 words, multiply, push product
- divide: pop 2 words, divide, push quotient
Stack Machine Example

\[x + 22 \]

would translate to:

\begin{verbatim}
push x
pushcon 22
add
\end{verbatim}

(Let’s keep it simple and assume there are only 26 variables a..z: I.e. variable names are single letters)
Translation Scheme for Stack Machine
(Note introduction of variables)

E → E + T { emit “add”}
 | E - T { emit “subtract”}
 | T

T → T * F { emit “multiply”}
 | T / F { emit “divide”}
 | F

F → id { emit “push ID”}
 | num { emit “pushcon NUM”}
 | (E)
Remove Left Recursion

\[
\begin{align*}
E & \rightarrow \ T \ R \\
R & \rightarrow \ + \ T \ {\{\text{emit "add"}\}} \ R \\
& \mid - \ T \ {\{\text{emit "subtract"}\}} \ R \\
& \mid \epsilon \\
T & \rightarrow \ F \ Q \\
Q & \rightarrow \ * \ F \ {\{\text{emit "multiply"}\}} \ Q \\
& \mid / \ F \ {\{\text{emit "divide"}\}} \ Q \\
& \mid \epsilon \\
F & \rightarrow \ \text{id} \ {\{\text{emit "push ID"}\}} \\
& \mid \ \text{num} \ {\{\text{emit "pushcon NUM"}\}} \\
& \mid \ (\ E \)
\end{align*}
\]
define NONE -1
define NUM 256
define ID 257
define DONE 258

int getoken()
{
 int t;
 while(1) {
 t = getchar();
 if (t==' ' || t=='\t') /*strip white space*/
 if (t == '\n') ++lineno;
 else if (isdigit(t)) {
 tokenval = t - '0';
 t = getchar();
 while (isdigit(t)) {
 tokenval = tokenval*10 + t-'0';
 t = getchar();
 }
 ungetc(t, stdin); return NUM;
 }
 else if (isalpha(t)) { /* identifier */
 tokenval = tolower(t);
 return ID;
 }
 else if (t == EOF) return DONE;
 else {
 tokenval = NONE;
 return t; /* + - () etc. */
 }
 }
}
Add Code to Generate Assembly Code

/* Functions to simplify printing assembly instructions and report errors */
/* Each prints a single line, hiding formatting details from parser */
void emit(char * x) { /* 0-address instruction (opcode only) */
 printf("\t%s\n",x);
}
void emit1n(char *x, int y) { /* 1-address instruction, numeric parameter */
 printf("\t%s %d\n",x,y);
}
void emit1c(char *x, char y) { /* 1-address instruction, char parameter */
 printf("\t%s %c\n",(x),(y));
}
error(m) char *m; {
 fprintf(stderr,"line %d: %s\n",lineno,m);
 exit(1);
}

Note that these are simple enough that they could actually be written as C "macros
Parser/Translator

E() { T(); R(); }

R() {
 if (tok == '+') {
 match('+'); T();
 emit("add"); R();
 } else if (tok == '-') {
 match('-'); T();
 emit("subtract"); R();
 } else; /* "absorb" empty string */
}

T() { F(); Q(); }

Q() {
 if (tok == '*') {
 match('*'); F();
 emit("multiply"); Q();
 } else if (tok == '/') {
 match('/'); F();
 emit("divide"); Q();
 } else; /* "absorb" empty string */
}
Completion of Translator, and Demo

F(){
 if (tok == ID) {
 emit1c("push",tokenval); match(ID);
 }
 else if (tok == NUM) {
 emit1n("pushcon", tokenval);
 match(NUM);
 }
 else if (tok == '(') {
 match('('); E();
 match(')');
 }
 else error("syntax error");
}

Input:
(1+y)*34-z

Output:
pushcon 1
push y
add
pushcon 34
multiply
push z
subtract